578 research outputs found

    Application of a failure assessment diagram under rolling contact to components with hardness variable along the depth

    Get PDF
    Abstract A development of a failure assessment diagram for the evaluation of the safe working area of components subjected to rolling contact loading is here presented regarding the application to components whose hardness varies along the depth. The approach takes into account the influence of inherent defects in determining subsurface rolling contact fatigue, depending on working conditions, material properties and hardness profile along the depth. For this aim, crack propagation from inherent defects is assessed in terms of applied stress intensity factor range normalized with respect to short crack growth threshold, defect – free fatigue is assessed in terms of Dang Van stress normalized with respect to shear fatigue limit, where the material quantities depend on hardness variable with depth. These two normalized quantities are the coordinates of the points of a "reference curve" in the failure assessment diagram, which location indicates whether and where failure is expected to occur. By analysing different combinations of loading condition, inclusion dimension and hardness profile, it was possible obtaining a design diagram of general validity, which allows a fast prediction of safety against subsurface rolling contact fatigue

    Influence of micro-notches on the fatigue strength and crack propagation of unfilled and short carbon fiber reinforced PEEK

    Get PDF
    Short carbon fiber reinforced (SCFR) PEEK is a highly attractive material for lightweight structures; improving knowledge about the influence of local imperfections on its fatigue behavior is essential for the design of real components. To this aim, fatigue strength and crack propagation of two grades of SCFR PEEK and neat matrix were investigated by testing at different stress levels specimens with a micro-notch consisting of a small blind hole (range diameter 0.1–1 mm). Overall, the presence of a micro-notch resulted in a decrease of fatigue strength compared to un-notched condition, but with different sensitivity and crack propagation patterns; while a higher fiber volume fraction enhanced fatigue strength and resistance to crack propagation, the combination of a lower fiber content and inclusion of additive particles had a negative effect. Crack propagation in the notched region was also evaluated. The average values of Paris' law exponential coefficients were similar and within the range of literature values, without apparent correlation with reinforcement type. Preliminary investigations in the presence of the smallest micro-notches seem to indicate the presence of a threshold size below which the influence of a small notch is comparable with that of material inherent defects, but further testing is necessary

    Fatigue behavior and cyclic damage of peek short fiber reinforced composites

    Get PDF
    Fatigue strength and failure mechanisms of short fiber reinforced (SFR) PEEK have been investigated in the past by several research groups. However some relevant aspects of the fatigue behavior of these materials, like cyclic creep and fatigue damage accumulation and modeling, have not been studied yet, in particular in presence of both fillers and short fibers as reinforcement. In the present research these aspects were considered by carrying out uni-axial fatigue tests in load control (cycle ratio R = 0) on neat PEEK and PEEK based composites reinforced either with short carbon fibers only or with addition of fillers (graphite and PTFE). For each material stress-life curves were obtained and compared. Fatigue fracture surfaces were analyzed to identify failure mechanisms in presence of different reinforcement types. The evolution of cyclic creep strain was also monitored as a function of the number of cycles, thus allowing investigation on the correlation between cyclic creep parameters and fatigue life. The evolution of cyclic damage with loading cycles was then compared by defining a damage parameter related to the specimen stiffness reduction observed during the tests. Progressive cyclic damage evolution of short fiber reinforced PEEK composites presented significantly different patterns depending on applied stress level and on the presence of different reinforcement typologies. In order to reproduce the different fatigue damage kinetics and stages of progressive damage accumulation observed experimentally, a cyclic damage model was finally developed and implemented into a finite element code by which a satisfactory agreement between numerical prediction and experimental data at different stress levels for each examined material

    A new Monte Carlo muon generator for cosmic-ray muon applications

    Get PDF
    Cosmic rays, thanks to their ubiquity and high penetration capability, have been successfully used in scientific research ever since their discovery. As soon as their knowledge improved, applications in the civil/environmental field were also developed: muon radiography (or muography, based on the flux attenuation) and muon tomography (based on the scattering angle) have been used to study the inner structure of volcanoes, to seek hidden rooms in Egyptian pyramids, to search for heavy metals in containers, and so on. And besides these imaging techniques, cosmic ray muons are also widely used for detector testing and alignment practically in every Nuclear Physics or Particle Physics experiment. Since most of these applications are sensitive to the angular and momentum distribution of cosmic muons, an accurate modelling of these distributions is a key feature for any generation tool conceived to simulate the cosmic muon flux. This can make the generator quite time-consuming, which is a strong limit when one needs to reach high statistics or to study large structures. A new Monte Carlo generator for cosmic-ray muons, named Efficient COsmic MUon Generator (EcoMug for short), especially designed to be fast (≳ 10^5 muons generated per second on a standard machine) without losing accuracy, is presented here. It is written as a header-only C++11 library, ready to be integrated into whatever C++ code, in particular C++ code based on Geant4 simulation tool. By default, EcoMug relies on a simple and effective parametrisation of the experimental data of cosmic ray differential flux at sea level, taken from the literature, but the library is written in such a way that every user can easily replace it with his own user-defined parametrisation. Unlike other tools, EcoMug is able to generate muons from different kind of surfaces (plane, cylinder and half-sphere), while keeping the correct angular and momentum distribution of generated tracks inside a fiducial volume. This allows to optimise the generation surface according to the system under study, and leads to a further improvement of the overall simulation efficiency. In this contribution we will present the main features of EcoMug, starting from its mathematical foundation, and eventually showing some interesting applications

    Una procedura per la valutazione dei limiti di utilizzo di O-Ring sottoposti ad intensi fasci di neutroni

    Get PDF
    Si presenta una procedura per la previsione della durata di utilizzo di O-ring in materiale polimerico impiegati nei bersagli per la produzione di fasci di ioni radioattivi. Si sono dapprima condotte prove di tenuta a vuoto e analisi a elementi finiti di un O-ring di riferimento operante con diversi livelli di interferenza con la cava, identificando la precompressione limite per la tenuta e la corrispondente pressione di contatto con la cava. Si sono poi effettuate prove di trazione e di Compression Set su campioni di O-ring in EPDM, preventivamente sottoposti a diversi livelli di irraggiamento in campi misti di neutroni e gamma, analizzando l’effetto della dose assorbita sul comportamento meccanico del materiale e sulle corrispondenti proprietà resistenziali, e definendo opportune leggi costitutive. Si sono infine simulate le progressive modifiche di comportamento della guarnizione indotte dall’irraggiamento, prevedendone la durata in esercizio in termini di tenuta e di resistenza strutturale

    Noise reduction in muon tomography for detecting high density objects

    Get PDF
    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented

    Precision measurements of Linear Scattering Density using Muon Tomography

    Full text link
    We demonstrate that muon tomography can be used to precisely measure the properties of various materials. The materials which have been considered have been extracted from an experimental blast furnace, including carbon (coke) and iron oxides, for which measurements of the linear scattering density relative to the mass density have been performed with an absolute precision of 10%. We report the procedures that are used in order to obtain such precision, and a discussion is presented to address the expected performance of the technique when applied to heavier materials. The results we obtain do not depend on the specific type of material considered and therefore they can be extended to any application.Comment: 16 pages, 4 figure

    Investigating the possibility of leakage detection in water distribution networks using cosmic ray neutrons in the thermal region

    Get PDF
    Water distribution systems can experience high levels of leakage, originating from different sources, such as deterioration due to aging of pipes and fittings, material defects, and corrosion. In addition to causing financial losses and supply problems, leakages in treated water distribution also represent a risk for public health. Despite several techniques for leak detection are already available, there is still a lot of interest in new non-invasive approaches, especially for scenarios where acoustic techniques struggle, such as in noisy environmental conditions. In this work we investigated the possibility of using cosmic ray (CR) neutrons for the detection of underground leakages in water distribution networks, by exploiting the difference in the above ground thermal neutron flux between dry and wet soil conditions. The potential of the technique has been assessed by means of an extensive set of Monte Carlo simulations based on GEANT4, involving realistic scenarios based on the Italian aqueduct design guidelines. Simulation studies focused on sandy soils and results suggest that a significative signal, associated with a leakage, could be detected with a data-taking lasting from a few minutes to a half-hour, depending on the environmental soil moisture, the leaking water distribution in soil, and the soil chemical composition. Finally, a brief description of a new portable and low-cost detector for thermal neutrons, currently under commission, is also presented

    Correlations between rail wear rates and operating conditions in a commercial railroad

    Get PDF
    The rail wear rates per traffic unit (mm/MTon) in the curves of a 4.5 km-long commercial line over a period of 9 years were measured and related to specific operation conditions. The rail corrugation was analyzed using a Corrugation Analysis Trolley (CAT) and visual inspection was carried out in order to identify the defects in the railroad. Since Rolling Contact Fatigue (RCF), artificial abrasion and corrugation were found to be the most important issues the grinding procedures used during maintenance of the railroad were evaluated to assess their effectiveness on removing the defects from the rail surface. The results showed that the wear rates in the studied railroad were several times higher than those typically found in the literature, mainly as a consequence of inappropriate grinding regimes. White layer formation and only partial removal of cracks emerged as the most relevant drawbacks of rail grinding procedures
    • …
    corecore